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Abstract 

 
Plagiarism in the Khmer language remains a critical challenge in Cambodia, as the limited 

availability of digitized texts and continued reliance on hard-copy sources impede the 

development of effective digital detection tools. This gap has enabled widespread plagiarism in 

research papers, books, and educational documents published by students, researchers, and 

authors from various academic and research organizations, compromising academic integrity and 

highlighting the urgent need for a digital solution. 

Although advanced plagiarism detection tools, such as Grammarly and Chegg, have significantly 

contributed to ensuring originality in many languages worldwide, they fail to detect plagiarism in 

under-resourced languages like Khmer. 

Therefore, this project aims to develop a plagiarism detection tool specifically for the Khmer 

language and to identify the most efficient approach by comparing four different methods: Term 

Frequency–Inverse Document Frequency (TF-IDF) with cosine similarity; N-gram with Jaccard 

similarity stored in a PostgreSQL inverted index; Bidirectional Encoder Representations from 

Transformers (BERT); and Elasticsearch. Additionally, to analyze hard-copy source documents 

for plagiarism, they are first scanned and then processed using Optical Character Recognition 

(OCR) to extract the necessary text. 

The system enables educational institutions, libraries, and publishers to upload large volumes of 

documents, books, and academic papers to detect plagiarized content, receive a plagiarism score, 

and identify matched sources within seconds. All uploaded documents are stored in a centralized 

storage system, allowing users to access their digital copies easily. 

The tool is currently deployed on self-managed servers at the Cambodian Ministry of Education, 

the primary funder of this initiative. It is being used to assess official educational content and 

academic papers from 13 universities in Cambodia, helping evaluate the tool’s effectiveness and 

identify areas for further improvement. 

While the system effectively detects thousands of identical and similar plagiarized sentences, its 

accuracy is limited by the OCR text extraction. Common OCR inaccuracies can result in 



distorted text, reducing the effectiveness of plagiarism detection. Future enhancements will focus 

on improving OCR performance and integrating internet-based plagiarism detection, ultimately 

expanding the system's capabilities and further strengthening research integrity in Cambodia. 
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1. Introduction 
 

Every educational institution in Cambodia has enforced strict regulations against plagiarism and 

demonstrated a strong commitment to upholding academic integrity. However, there is currently 

no dedicated tool for detecting plagiarism in the Khmer language, which creates significant 

constraints in validating the originality of authors' work. Since most Cambodian academic 

content remains in hard-copy format, this presents further obstacles for institutions attempting to 

analyze plagiarized texts effectively.  

To address these challenges, the Ministry of Education, Youth, and Sports Secretariat proposed 

the development of plagiarism detection tools to deter unethical practices and encourage original 

research in Cambodia. This project aims to provide educational institutions, publishers, and 

researchers with a tool to verify the originality of Khmer texts efficiently.  

This section outlines the problem statement, that is supported by relevant references, and 

presents the motivation and background of the project. 

 

1.1 Problem Statement 
 

According to insights shared during a personal interview with the Secretary of State and Minister 

at the Ministry of Education, Youth and Sport (MoEYS) in Cambodia, many authors, PhD 

researchers, and professors at more than thirteen universities in Cambodia, have reused 

redundant content to produce additional publications, despite being informed about the 

consequences of plagiarism. These practices have been identified in many education documents 

containing overlapping or recycled content within the Ministry of Education’s annual books and 

research publications. 

Furthermore, a recent official report from the Cambodian Education Forum (2023) found that 

plagiarism is common not only among students, but also among many academic staff [1]. The 

limited availability of digital Khmer texts worsens the problem, as most of the academic papers 

are not digitized. This makes it difficult for advanced internet–based plagiarism detection tools 

such as Grammarly or Chegg to work effectively with the Khmer language hard-copy texts. 



1.2 Motivation 
 

This plagiarism detection tool is designed to provide a solution for Cambodian university’s 

academic departments, faculty members, document publishers, and educational institutions to 

verify original works in the Khmer language by comparing them with previously stored 

documents in the database. With this tool, institutions will save time and resources by analyzing 

large documents for plagiarism in seconds through a user-friendly web-based interface and 

receive plagiarism detection results via email. Additionally, the tool addresses challenges related 

to non-digitized hard-copy texts by utilizing Optical Character Recognition (OCR) to convert 

them into searchable digital text.  

 

1.3 Project Background 
 

Initiated and funded by the Cambodian Ministry of Education, Youth, and Sport (MoEYS), this 

project aims to detect plagiarism in academic publications across educational institutions. To 

enforce research integrity, the Secretary of State at MoEYS has also authorized thirteen public 

universities in Cambodia to test this platform for reviewing research papers, documents, and 

published books.  

This initiative provides a centralized solution for detecting duplicated content, ensuring that 

Cambodia’s academic works maintain high levels of originality and credibility.  

Looking ahead to the future, this project will allow not just all institutions in Cambodia, but 

students nationwide to use the platform and check for plagiarism easily as digital document 

datasets will grow every year. 

 

 

 

 



2. Literature Review 
 

This section reviews existing research on Cross-Language Plagiarism Detection (CLPD) using 

multilingual Bidirectional Encoder Representations from Transformers (BERT) and Khmer 

semantic search engines. It discusses current limitations and demonstrates how addressing these 

issues is essential for building an effective plagiarism detection tool for the Khmer language. 

 

2.1 Plagiarism Detection for Under-Resourced Languages 
 

A recent study by Karen Avetisyan et al. (2023) explores advancements in Cross-Language 

Plagiarism Detection (CLPD) using a pre-trained multilingual BERT model, achieving high 

accuracy for under-resourced languages. The researchers used Armenian as a test language and 

demonstrated that BERT's contextual embeddings could effectively capture semantic similarities 

across languages [2]. However, the study has not yet been extended to Southeast Asian 

languages like Khmer, which presents distinct challenges such as a continuous script and the lack 

of standardized word segmentation tools. Inspired by this work, this project will also utilize this 

BERT-based technique specifically for the Khmer language, aiming to overcome its structural 

complexities and evaluate the model’s effectiveness on Khmer academic content. 

 

2.2 Khmer Semantic Search Engine  
 

One study by Nimol Thuon et al. (2024) on a Khmer semantic search engine utilizing Term 

Frequency-Inverse Document Frequency (TF-IDF) focuses on enhancing document retrieval 

based on keyword searches in the Khmer language. The system also allows users to upload 

documents to the database and search for similar content within the uploaded files. While the 

system effectively retrieves relevant content, its functionality is limited to sentence- or keyword-

based searching and does not support full-document plagiarism analysis of PDF or Word files. 

This limitation highlights the need for a more comprehensive approach to Khmer text analysis 

that includes OCR and plagiarism detection across various document formats [3]. 



3. Project Objective, Deliverable and Stakeholders 
 

This section outlines the expected outcomes of the project and key components that need to be 

developed to deliver an efficient plagiarism detection tool for our stakeholders. The system was 

developed in alignment with the needs of the Ministry of Education, Youth and Sport (MoEYS), 

the primary stakeholder. Their involvement ensured that the final platform is both relevant and 

usable within the Ministry and across targeted universities in Cambodia. 

 

3.1 Main Objective and Key Deliverable 

The main objective of this project is to develop a Khmer-language plagiarism detection tool that 

allows educational institutions, publishers, and researchers in Cambodia to verify content 

originality. This tool addresses the limitations of existing plagiarism detection platforms such as 

Grammarly or Chegg, which lack support for the Khmer language, and a feature that allows 

users to upload documents into the system and compare new submissions against those 

previously uploaded. This system also utilizes OCR to extract Khmer text from PDF files. The 

specific objectives of this project include: 

1. Data gathering, cleaning, and pipeline development 

o Compile hundreds of sample documents in Microsoft Word and PDF formats 

provided by the Cambodian Ministry of Education, Youth, and Sports (MoEYS). 

o Preprocess each document by text cleaning and tokenization. 

o Create metadata (e.g., document ID, title, author, university) for each document, 

and store it in both the database and the file storage system. 

2. Integrating Optical Character Recognition (OCR) for hard-copy texts 

o Convert all PDF pages to images.  

o Extract text from each image using OCR to enable plagiarism detection. 

3. Developing a scalable plagiarism detection functionality 

o Utilize a fast and scalable similarity search algorithm to detect plagiarized content 

within a large academic dataset.  

o Set a threshold to identify both exact and partial similarities. 



4. Providing a user-friendly web-based platform  

o Develop a web interface that allows users to upload documents for plagiarism 

detection. 

o Deliver plagiarism detection results (e.g., similarity score, matching reference 

sentences from the database, and associated university names) in downloadable 

Excel files via email. 

o Allow users to view, delete, or download all uploaded files in the database as 

needed. 

o Display real-time storage usage and alert users when storage is full. 

o Provide login access for admin and standard users. 

5. Deployment on a self-managed server at the Cambodian Ministry of Education, Youth, 

and Sports 

o Host the file storage system and web application on a self-managed server at 

MoEYS. 

o Allow all authorized users to access the web application via the domain name 

provided by MoEYS (domain name: plagiarism-checker.duraseksa.gov.kh) 

3.2 Stakeholder Involvement and Collaboration 

The Ministry of Education, Youth and Sport (MoEYS) served as the primary stakeholder in this 

project, as the MoEYS team will be responsible for providing the document dataset, defining the 

system requirements to meet the expected outcome and the practical needs of Cambodian 

education institutions and support final system deployment in the self-managed MoEYS server. 

 

 

 

 



4. Methodology and Implementation 
 

This section outlines the methodology and technical implementation of the Khmer-language 

plagiarism detection system. The methodology consists of three main stages: preparing the input 

data, applying different plagiarism detection methods, and evaluating their effectiveness. 

The section begins with an overview of the development environment and tools used. It then 

explains the data preparation process to extract clean and structured text, which is then used as 

input for four distinct detection methods: TF-IDF with cosine similarity, N-gram with Jaccard 

similarity stored in a PostgreSQL inverted index, BERT embeddings with FAISS, and full-text 

search using Elasticsearch. 

Each method is examined in terms of its theoretical foundation, technical implementation, and 

performance limitations. Finally, the results are compared to assess which techniques are most 

effective for plagiarism detection in the context of the Khmer language. 

 

4.1 Development Environment and Technology Stack 
 

The development environment includes the software frameworks, tools, and services used to 

build, train, test, and deploy the Khmer-language plagiarism detection system. It spans several 

components, covering backend and frontend development, OCR processing, machine learning 

tools, storage system, and deployment. The technologies are grouped as follows: 

• Machine learning Tools 

o Scikit-learn – Used to implement TF-IDF vectorization and cosine similarity 

o Transformers – Used to experiment with the multilingual BERT model for 

plagiarism detection 

• Text extraction and search Tools 

o Tesseract OCR – Used to extract text from images 

o Elasticsearch – Enables efficient similarity search and large-scale text retrieval. 

o FAISS – Used for integrating with BERT to support fast vector-based document 

retrieval 



• Storage and background task management 

o MinIO – Used to store uploaded documents, supporting secure backup and file 

access. 

o Redis – Used for managing background tasks and job queues, enabling 

asynchronous processing of plagiarism detection tasks. 

• Programming languages and frameworks 

o Python / Flask – Used to build a backend development framework responsible for 

API endpoints, processing logic, and integration with search components 

o React.js – Used for developing a responsive and interactive web-based frontend 

• Deployment 

o Ministry of Education, Youth and Sport (MoEYS) Server – Used for Production 

hosting environment  

o Docker – Used to containerize and manage all services, ensuring consistent 

deployment. 

• Development tools  

o Visual Studio – Used for source code development  

o Postman – Used for RESTful API testing and validation during backend 

development  

o Jupyter Notebook – Enabled model testing without separate file export 

o Google Colab – Used to test BERT-based methods on GPU-enabled environments 

for improved performance during experimentation 

 

4.2 Data Preparation 
  

This section outlines the steps taken to prepare data for plagiarism detection, including data 

acquisition, file type parsing, and preprocessing. In the data acquisition phase, documents are 

provided by official sources from the Ministry of Education, Youth and Sport (MoEYS). Since 

the system accepts two file formats, each file is processed according to its type. For instance, 

scanned PDF files are processed using Optical Character Recognition (OCR) with Tesseract, 

while Microsoft Word documents are parsed directly to extract text using a Python library. Once 



the raw text is extracted, it is cleaned and tokenized using a custom preprocessing pipeline. This 

same pipeline is applied to both user-uploaded documents stored in the database and those being 

checked for plagiarism, ensuring consistent formatting and reliable comparison.  

 

4.2.1 Data Acquisition 
 

The dataset used in this project was provided via Google Drive by the Ministry of Education, 

Youth, and Sport and includes a total of 551 published books collected from thirteen universities 

across Cambodia. These documents cover a wide range of topics, including agriculture, 

technology, literature, and more. Among these, 541 files are in PDF format while the remaining 

10 are in Microsoft Word format. Since most of the PDF files are scanned, Optical Character 

Recognition (OCR) is required to extract readable text before all plagiarism detection methods 

can be performed. 

 

 

Figure 1: Dataset Provider 

 



4.2.2 Different Filetype Parsing 
 

This section outlines how different file types are handled during the parsing phase to ensure 

consistent text extraction. Each format requires a specific processing method, for instance, PDF 

files, are processed using Optical Character Recognition (OCR) to extract text, while Microsoft 

Word documents are parsed directly using Python library. 

4.2.2.1 Portable Document File Parsing 
 

Several Python libraries were explored for extracting text directly from PDF files, including 

PyMuPDF, pdfminer, and pdfplumber. Although these tools are widely used for handling digital 

PDFs, they do not produce accurate results when applied to Khmer text. As a result, Tesseract 

OCR was selected as the primary method for processing scanned PDFs, as it provided more 

reliable text recognition for the Khmer language.  

 

 

Figure 2: Text Extraction with Pdfplumber 

 

 

Figure 3: Text Extraction with Pdfminer 



 

Figure 4: Text Extraction with PyMuPDF (Fitz) 

 

To install Tesseract for the Khmer language on our Windows environment, we downloaded the 

trained data file from the Tesseract OCR GitHub repository [4]. 

Once installed, Tesseract was used to perform OCR on scanned PDF documents. To extract text 

using this OCR engine, each page of the PDF was first converted into an image using the 

pdf2image library [5]. After retrieving all pages, the pytesseract.image_to_string() function was 

then used to extract text from each image. However, processing one page at a time can slow 

down the text extraction. Therefore, we utilized Python’s ProcessPoolExecutor to extract text 

from multiple pages concurrently. As shown in the following figure, Tesseract OCR produced 

the most accurate text extraction compared to the other libraries. 

 

Figure 5: Text Extraction with OCR (Tesseract) 

 

4.2.2.2 Microsoft Word Document File Parsing 
 

To extract text from Microsoft Word documents in .docx format, we used the Python library 

python-docx, which provides access to the document's structure, including paragraphs and tables. 

Using this library, the system iterates through all elements in the document body and retrieves 

the available text content for further processing. The following pseudocode illustrates the process 

of extracting text elements from a .docx file using python-docx: 



 

Initially, an empty list called document_content is created to store the extracted text. The system 

then iterates through each element in the document body using the iterchildren function from the 

python-docx library. If the element is a paragraph (i.e., its XML tag ends with 'p'), the text is 

extracted and added directly to the document_content list. If the element is a table (tag ends with 

'tbl'), the system iterates through each row and collects text from all cells. The cell contents are 

then joined using the pipe symbol (|) as a separator to form a single formatted row, which is 

appended to the document_content list. This process continue until there is no further content in 

the document body. 

4.2.3 Data Preprocessing Pipeline 
 

After the text is extracted, a series of preprocessing steps are applied to clean and prepare it for 

plagiarism detection. The raw text often contains inconsistent line breaks, extra spaces, 

unnecessary characters, and irregular newlines. Therefore, the following steps are applied to 

ensure text consistency. 



 

Figure 6: Data Preprocessing Pipeline 

 

1. Remove headers, footers, page numbers, and titles: The raw extracted text often contains 

non-content elements such as page numbers, document headers and footers, and chapter 

titles. These are considered textual noise and must be removed to improve the accuracy 

of plagiarism detection. To filter them out, we observed the following patterns:  

• Lines consisting only of two to three-digit numbers with symbols are page 

numbers.  

• Repeated lines across multiple pages are headers or footers. 

• Lines that follow a numbering format (e.g., "1.", "1.1") and have fewer than 20 

characters are removed using regular expressions (regex), as they are titles.  

2. Character correction and normalization: 

• Reordered characters for consistency: In Khmer, certain characters can appear 

visually correct but are actually in different Unicode sequences due to incorrect 

ordering. For example, the word "ស្រី្ត" (female) can be encoded as either ី + ្  + រ 

+ ្  + ត + ្្ or ី + ្  + ត + ្  + រ + ្្. Although these variants look similar on screen, 

they produce different underlying character sequences, which can negatively 

affect text comparison [6]. To address this issue, the system ensures that the 

character រ is always placed between the diacritic marks (  ្) to maintain consistent 

and correctly ordered Unicode representations [7].  



• Incorrect character replacement: Some characters may be incorrectly used or 

misrecognized by OCR. For example, "ីដ្" (scold) should be represented as ី + ្  

+ ដ + ្្, but an OCR error most certainly produces ី + ្  + ត + ្្, substituting the 

correct consonant (ដ) with a similar-looking but incorrect one (ត). To solve this 

issue, we can use the replace function in Python to always convert words that 

consist of  ្ + ត to return ្  + ដ. [6] 

• Number normalization: To maintain consistency across the dataset, all Khmer 

numerals (e.g., ១២៣) are converted into Arabic numerals (e.g., 123). [6] 

 

3. Convert characters to consistent encoding (UTF-8): All content is encoded in UTF-8 to 

ensure consistent character representation. 

 

4. Remove spaces: Extra spaces, tabs, and line breaks are stripped to ensure clean texts. 

 

5. Remove unwanted punctuation: Punctuation that does not contribute to meaning such as 

៚, ៗ, “, «, ^,”, (, /,), etc. are removed. 

 

6. Sentence segmentation: The cleaned text is then divided into sentence-level units using 

Khmer ending punctuation and symbols such as: ។, ៖, ! and ?. 

 

7. Word tokenization: For Khmer, a language that does not use spaces between words, word 

tokenization is a critical preprocessing step. Methods like TF-IDF, N-gram, and 

Elasticsearch rely on clearly defined word boundaries to compute meaningful terms. To 

achieve this, we use the khmercut library to segment sentences into smaller word units for 

indexing and similarity detection [8].  

 

8. Correct OCR spell-check errors: OCR can introduce spelling errors, especially with the 

Khmer script. This step identifies and corrects OCR spelling mistakes to improve 



accuracy in plagiarism detection. To implement this, we use a tool provided by 

Khmerlang spell check correction API to process the tokenized words [9].  

 

 

Figure 7: OCR Spelling Errors Correction with Khmerlang API 

 

As shown in the above figure, the API returns results that allow us to identify words with 

OCR errors. We then use the suggestions from the API response to replace those words 

and reduce errors caused by OCR. 

9. Remove stop words: Common but semantically weak words such as “គាត់”, “ការ” or “ន េះ” 

are removed to improve search relevance. To implement this, we have used the Khmer 

stop word from the Khmer Natural Language Processing community to filter all of the 

unnecessary words [10].  

After preprocessing, the cleaned and standardized text is ready for analysis. This processed data 

is then used as input across the following plagiarism detection methods. Each method is 

described in the following sections along with its implementation, and evaluation results. 

4.3 Plagiarism Detection Methods 

This section outlines different methods that can be used to detect plagiarized content in the 

preprocessed data. After exploring each method, the following section will evaluate which one 

offers the best results, and that method will be integrated into our web application system. Each 

method uses a distinct strategy to measure text similarity, including vector-based approaches like 

TF-IDF with cosine similarity; set-based techniques like n-gram and Jaccard similarity (stored in 



an inverted index in PostgreSQL); advanced retrieval engines like Elasticsearch; and deep 

learning models such as BERT combined with FAISS for similarity matching. 

The following subsections explain each method in detail, including its theoretical overview, 

technical implementation aligned with system requirements, results, and limitations. 

4.3.1 TF-IDF and Cosine Similarity  
 

Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity are widely used 

methods for measuring textual similarity. They convert each sentence into a vector based on 

word importance and calculate similarity using the cosine of the angle between the two vectors. 

This section explains how TF-IDF works in theory, its technical implementation, performance 

optimization, results and limitation. 

 

4.3.1.1 Theoretical Overview 
 

Term frequency (TF) measures how frequently a term appears in a document, normalized by the 

total number of terms in that document.  

 

𝑇𝐹 (𝑡, 𝑑)  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑢𝑚𝑒𝑛𝑡 𝑑
 

 

However, Term Frequency alone is not sufficient to determine whether each document is similar 

because there could be common terms that may appear frequently in many documents but carry 

no meaning which lead to false positive. Therefore, we combine Inverse Document Frequency to 

also measure how rare a term is across all documents.  

 

𝐼𝐷𝐹 (𝑡)   =  𝑙𝑜𝑔 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
 



If a term appears in many documents, the denominator becomes large, and the overall fraction 

becomes small. By taking the logarithm of a small number, the IDF score becomes low, making 

the frequent words appear to be less considered and prioritized words with rarity across the entire 

document. By multiplying TF and IDF, we ensure a term receives a high TF-IDF score only 

when it is both frequent and also rare in the overall dataset. [11] 

 

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑)  =  𝑇𝐹(𝑡, 𝑑)  ×  𝐼𝐷𝐹 (𝑡)  

 

To apply this method in our plagiarism detection tool, we first compute the TF-IDF scores for all 

terms (words) across both the original documents in the database and the newly uploaded 

document that the user wants to check for plagiarism. These scores are combined into vectors, 

with each sentence represented as a vector.  

After converting each sentence into a TF-IDF vector, we compare the sentence vectors from the 

newly uploaded document with those from the existing documents in the database. To measure 

how similar two sentences are, we apply cosine similarity, which calculates the angle between 

two vectors in a high-dimensional space. 

The smaller the angle, the more similar the sentences are. A cosine similarity scores close to 1 

indicates high similarity, while a score near 0 suggests little to no similarity. The formula for 

cosine similarity between two vectors, A and B, is shown below 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 (𝐴, 𝐵)  =  
𝐴 . 𝐵

‖𝐴‖‖𝐵‖
 

 

4.3.1.2 Process Flow with TF-IDF and Cosine Similarity 
 

TF-IDF vectors are computed based on term frequencies and document frequencies across the 

entire dataset, including the original documents in the database and the newly uploaded 

documents that the user wants to check for plagiarism. This process is computationally expensive 

and inefficient, especially when dealing with many documents. 



To address this limitation, we compute the TF-IDF vectors once for each sentence in the original 

documents and utilize the joblib library to save the results. Joblib is a Python library that 

efficiently saves and loads large objects like TF-IDF models and vectors to avoid recomputing 

them repeatedly [12]. Later, when a new document is uploaded, we simply load the saved results 

from joblib and transform only the new sentences into TF-IDF vectors. These vectors are then 

compared to each vector in the precomputed matrix using cosine similarity to produce similarity 

scores. This approach avoids redundant preprocessing by saving the results once and loading 

them when needed. The diagram below illustrates the implementation of this method: 

 

Figure 8: TF-IDF Pipeline Implementation 

 

4.3.1.3 Technical Implementation 
 

For this implementation, we utilize TfidfVectorizer function from Scikit-learn feature extraction 

library to calculate TF-IDF score and convert each sentence into vector. We divide the 

implementation into four main stages: 

1. Preprocessing and sentence extraction: We load our entire dataset, which contains 

metadata such as document ID, university, title, author, original filename, content type 

and a list of sentences. Each sentence is converted to TF-IDF vector and mapped to its 

corresponding metadata, allowing us to trace any detected similarity back to the original 

source. 

 



2. TF-IDF vectorization and joblib caching: After computing TF-IDF matrix with Scikit-

learn, we use the joblib from the Python library to save the vectorizer training model, TF-

IDF matrix of the original documents and its metadata. This allows us to avoid 

computing TF-IDF for the entire original documents in the database again every time a 

user upload a document to check for plagiarism. 

 

3. Transforming uploaded documents: When a user uploads new documents for plagiarism 

checking, the documents are passed through the same data preprocessing pipeline and 

transform function from Scikit-learn using the saved TfidfVectorizer from joblib.  

 

4. Measure textual similarity: Cosine similarity is used to compare each uploaded sentence 

vector with all original sentences vector in order to measure the similarity.  

 

 

4.3.1.4 Results and Limitation 

The processing time of this approach increases with the number of sentences being compared, as 

the system performs sentence-by-sentence similarity calculations. A key limitation of this 

method lies in its scalability: frequently adding new documents to the original dataset would 

require retraining the TF-IDF vectorizer on the entire corpus, which becomes increasingly time-

consuming as the dataset grows. 



4.3.2 N-gram and Jaccard Similarity 

N-gram and Jaccard similarity are another technique for comparing sets of text based on shared 

sequences. N-gram splits text into sequences of n words, while Jaccard similarity measures the 

overlap between two texts. This section outlines how n-gram and Jaccard similarity works in 

theory, along with their technical implementation to meet the requirements of our plagiarism 

detection system, their output results, and their limitations [13]. 

 

4.3.2.1 N-gram Tokenization Technique 
 

N-gram is a sequence of terms extracted from a given text. In our plagiarism detection tool, we 

use n-gram to break sentence into smaller segments and identify overlapping segments between 

sentences. 

 

Figure 9: Khmer Language N-Gram 

 

4.3.2.2 Measure Sentence Similarity with Jaccard  
 

Jaccard similarity is a method for comparing the similarity between two sets. In this context, let 

set A represent the n-grams of the original documents, and set B represent the n-gram of the 

uploaded document being checked for plagiarism. The Jaccard similarity between those two sets 

is defined as: 



𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵)  =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

 

The Jaccard similarity ranges from 0 to 1, where a higher similarity score indicates more 

overlapping n-grams between the two sets, while a lower score indicates less overlap. 

 

4.3.2.3 Process Flow with N-gram and Jaccard Similarity 
 

Calculating Jaccard similarity based on shared n-grams between all sentence pairs can be 

memory and computationally expensive, especially when we have a large number of documents. 

To address this, we use an inverted index method. Each n-gram from every sentence in the 

original documents is stored in the database, and mapped to the sentence IDs where it appears. 

 

Figure 10: Inverted Index for N-Gram 

 

During the plagiarism detection process, the newly uploaded document is split into sentences, 

and each sentence is broken into n-grams. These n-grams are then used to search for matches in 

the n-gram table in the database, allowing the system to quickly retrieve the sentence ID and its 

full sentence from the original document if they share at least one n-gram. Jaccard similarity is 

computed only between these candidate sentences, rather than performing a full sentence-by-

sentence comparison. The diagram below illustrates the implementation of this method: 



 

Figure 11: N-Gram and Jaccard Similarity Pipeline Implementation 

 

4.3.2.4 Technical Implementation 
 

First, we iterate through each sentence and its word tokens to create n-gram sequences. These 

unique n-grams are then indexed in a PostgreSQL database to support fast lookups. When a user 

uploads a document for plagiarism checking, we extract its n-grams and compare them against 

the indexed n-grams to retrieve candidate matches and then apply Jaccard to compute the 

similarity score. The overall implementation is divided into three main stages: 

1. Each sentence is processed by splitting it into a list of words, then iterating through 

the list to group every n consecutive word into n-grams. In the following example, we 

use n = 3. 

 

Figure 12: Trigram Output from Sample Khmer Texts 



2. We created three tables such as sentences, inverted index and ngrams in PostgreSQL. 

The sentences table stores each sentence along with its associated metadata, including 

the document ID, sentence ID (as the primary key), full sentence, author, title, 

university, and year of publication. The ngrams table stores each unique n-gram from 

all sentences, with ngram ID as the primary key. The inverted index table maps each 

n-gram to the sentence it appears in by storing both sentence ID and ngram ID as 

foreign keys. This structure enables better retrieval of candidate sentences for Jaccard 

similarity comparison. 

 
 

Figure 13: Inverted Index Schema for N-Gram in PostgreSQL  

3.  Once all candidate sentence IDs are obtained, we retrieve their corresponding full n-

grams and compute for Jaccard similarity. The similarity score is calculated as the 

ratio of the intersection size to the union size of the two n-gram sets. This comparison 

is implemented using set operations in Python. 

 



4.3.2.5 Results and Limitation 

This approach consumes a large amount of memory, especially with large datasets consisting of 

hundreds of thousands of sentences. Since every sentence is broken down into multiple n-grams 

and stored in the ngrams table, data can grow rapidly, consuming significant storage and memory 

resources. This leads to slower response times and reduced scalability for real-time applications. 

4.3.4 Bidirectional Encoder Representations from Transformers (BERT) 
 

Bidirectional Encoder Representations from Transformers (BERT) is an open-source language 

model developed by Google that can capture the semantic meaning of sentences. This allow us to 

apply it in our tool to detect similar content. This section outlines the use of this method and the 

implementation of BERT with FAISS (Facebook AI Similarity Search) to perform plagiarism 

detection. 

 

4.3.4.1 Utilizing Multilingual BERT and FAISS 

For under-resourced languages like Khmer, we utilize a multilingual BERT model—paraphrase-

multilingual-MiniLM-L12-v2—which could capture the semantic meaning of Khmer text and 

supports cross-lingual similarity [2]. To enable efficient similarity search, we employ FAISS 

(Facebook AI Similarity Search), which allows for fast approximate nearest neighbor retrieval in 

large vector spaces, significantly reducing computation time compared to brute-force pairwise 

comparisons. In our implementation, we use the IndexFlatL2 index, which performs search using 

the L2 (Euclidean) distance [14]. The L2 distance between two vectors x and y is defined as: 

𝐿2(𝑥, 𝑦)  =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖 =1

 

 

 



4.3.4.2 Process Flow with BERT and FAISS 
 

To implement our plagiarism detection tool with BERT and FAISS, we divide the process into 

two main stages: the original document preprocessing stage and the plagiarism checking stage. 

1. In the preprocessing stage, after each sentence from the original documents is cleaned 

and tokenized using our data preprocessing pipeline, it is encoded using a pre-trained 

BERT model and then indexed using FAISS for efficient similarity search. This index is 

saved into a model file to be reused during the plagiarism detection process. 

2. In the plagiarism checking stage, when a user uploads a new document, the same data 

preprocessing, and BERT encoding process is applied to the new document. The saved 

FAISS model is then loaded, and the newly encoded vectors are searched against the 

index to retrieve similar sentences.  

 

 

Figure 14: BERT and FAISS Pipeline Implementation 

4.3.4.3 Technical Implementation 
 

For this implementation, we use sentence transformers function from the SentenceTransformer 

library directly to encode the sentence to a dense vector in our Python code and FAISS library 

for indexing. This section outlines the encoding process using a pre-trained model from BERT 

and FAISS indexing. 



1. Each sentence is converted into a high-dimensional dense vector using a pre-trained 

multilingual model called paraphrase-multilingual-MiniLM-L12-v2 from transformer, 

which allows the system to detect some exact matches as well as paraphrased content. 

 

 

 

2. These vectors are added to a FAISS index to support fast and scalable search. This index 

allows fast comparison between new sentences and the existing dataset by vector 

distance. For this implementation, we can call the FAISS library directly and add the 

embeddings to the index. 

 

 

 

4.3.4.4 Results and Limitation 

This approach does not always return all matching sentences from the original dataset, even 

though they are completely identical or highly similar. This limitation is largely due to the way 

semantic similarity is computed, which is based on approximation rather than exact sentence 

matching. Another key limitation lies in the method’s scalability, as frequently adding new 

documents to the dataset requires re-encoding the entire corpus, which becomes increasingly 

time-consuming as the dataset grows. Additionally, this method relies on a GPU to process high-

dimensional embeddings efficiently. However, such hardware is not currently available on the 

Ministry of Education's server. 



4.3.5 Elasticsearch-Based Plagiarism Detection Method  
 

This section outlines the fourth approach to plagiarism detection using Elasticsearch. 

Elasticsearch is widely used due to its search capabilities, making it a suitable candidate for 

identifying potential plagiarized content.   

4.3.5.1 Conceptual Overview 
 

Elasticsearch is a search engine that supports fast and efficient full-text search. It is designed to 

store, index, and search large volumes of text data effectively. Like the N-gram and Jaccard 

similarity method described earlier, Elasticsearch also uses an inverted index—a data structure 

that maps each term in the dataset to the list of documents where it appears [15]. For ranking 

results, Elasticsearch uses the BM25 (Best Matching 25) algorithm, which builds upon TF-IDF 

by also considering document length. This slightly favors shorter documents and helps prevent 

longer documents from gaining an unfair advantage simply by repeating terms more frequently 

[16]. 

 

4.3.5.2 Process Flow with Elasticsearch 
 

To implement our plagiarism detection tool with Elasticsearch, we divide the process into two 

main stages: the original document preprocessing stage and the plagiarism checking stage. 

1. In the preprocessing stage, each sentence from the original documents is cleaned and 

tokenized using our data preprocessing pipeline. These processed sentences are then 

stored in an Elasticsearch index, enabling efficient retrieval and full-text search 

capabilities during plagiarism detection. 

2. In the plagiarism checking stage, when a user uploads a new document, it will go through 

the same cleaning and tokenization process using our data preprocessing pipeline. The 

system then queries the Elasticsearch index to retrieve sentences that are textually similar 

to the uploaded content. If any matching results are above similarity threshold, they are 

flagged and presented as potential plagiarism cases.  



 

Figure 15: Elasticsearch Pipeline Implementation 

 

4.3.5.3 Technical Implementation 

The Elasticsearch method involves configuring a full-text search engine that can index and query 

large volumes of sentence-level data. This section outlines how we setup the Elasticsearch, and 

use for indexing and querying. 

1. Docker was used to deploy Elasticsearch, which was configured to run on port 9200 and 

made accessible via its RESTful API. The application utilized the official Python 

Elasticsearch client to communicate with the containerized instance for both indexing and 

query operations. 

 

 



2. To enable efficient search, a custom mapping was first defined in Elasticsearch to specify 

the structure of the indexed documents. This mapping included fields such as title, 

authors, publication year, university, and sentence. Once the index was created with the 

defined mapping, documents adhering to this structure were inserted into the system. 

 

 

 

3. Elasticsearch analyzes the text from our queries and returns the most relevant matches 

based on scoring result. 

 



4.3.5.4 Results and Limitation 
 

Elasticsearch performed well both speed and accuracy. It can find all the identical sentences in 

the database in short period of time. Even when the input sentences had small changes, such as 

one or two extra or missing words, Elasticsearch still returned similar results. This shows that it 

can handle both exact matches and slightly different sentences, making it a strong choice for our 

plagiarism detection tool requirement. 

 

4.4 Methods Comparison and Discussion 
 

This section presents a comparative analysis of the plagiarism detection methods implemented in 

the system. The goal is to identify the most effective approach based on detection accuracy, 

execution time, memory usage, and scalability. The first subsection outlines the evaluation 

methodology and testing criteria, while the second provides a justification for the final method 

selection based on observed results. 

 

4.4.1 Evaluation Methodology 
 

To evaluate the effectiveness of each plagiarism detection method, we tested whether the system 

could successfully return all expected matches for a set of known plagiarized sentences. We 

randomly selected 600 sentences from the 551 indexed documents: 300 were exact matches, 

while the remaining 300 were slightly modified by inserting, deleting, or substituting, while still 

preserving the original content and sentence structure. 

Each method—TF-IDF with cosine similarity, N-gram with Jaccard similarity, Elasticsearch, and 

BERT embeddings with FAISS was evaluated based on its ability to accurately retrieve all 600 

sentences. The comparison focuses on accuracy, execution time, memory usage, and scalability. 

The results are summarized in the table below. 

 

 



 

 

Methods 

Score  

Time 

Execution 

(second) 

 

 

Peak Memory 

Usage (MB) 

 

 

Scalability Exact 

Sentence 

Similar 

Sentence 

TF-IDF & Cosine 1.00 0.87 

 

 

103.90 

 

  

 

291.19 

 

 

Inefficient for frequent data insertions, 

deletions, or updates due to the need to 

recompute the entire TF-IDF matrix. 

 

 

Ngrams and 

Jaccard 

(PostgreSQL 

inverted index) 

 

1.00 0.77 > 1000 

 

15.88 

 

 

Not scalable for large datasets, as n-gram 

growth significantly increases memory and 

slows down query performance. 

 

 

paraphrase-

multilingual-

miniLM-L12-v2 

BERT* 

 

0.71 0.23 83.834 0.21 

 

Frequent data updates require intensive 

memory and computation to rebuild. 

 

 

Elasticsearch 

 

 

1.00 

 

0.86 

 

2.1424 

 

9.69 

 

Elasticsearch allows parallel search and 

indexing for large datasets. 

 
 

Table 1: Methods Comparison 

* GPU is required for this operation 

 

4.4.2 Final Method Selection 
 

Based on the evaluation results, Elasticsearch offers the best overall balance between accuracy, 

performance, memory efficiency, and scalability. It successfully returned all exact matches and 

performed nearly as well as TF-IDF on similar sentences, while executing significantly faster 

and using less memory. Unlike methods such as TF-IDF and BERT, which require costly 

recomputation or GPU support, Elasticsearch supports incremental updates and parallel indexing, 

making it well-suited for large-scale and continuously growing datasets. Given these advantages, 

Elasticsearch was selected as the final method for our plagiarism detection system. 

 

 



5. System Architecture and Workflow 
 

This section outlines the overall architecture of the proposed plagiarism detection system, with a 

focus on how different technology components interact to support both uploading document to 

the database and plagiarism detection. It describes the technical components involved in the 

backend infrastructure and explains the key workflows from system input to output. The 

following subsections provide an overview of the system’s core components and describe two 

key backend workflows: one for indexing documents and another for detecting plagiarism. 

5.1 Overview of System Components 
 

The proposed system is composed of multiple technology components, including React.js, Flask 

API, Redis, MinIO file storage, Google Tesseract OCR, and Python scripts for the data 

preprocessing pipeline. These components work together to prepare documents for indexing and 

querying in Elasticsearch. Figure 16 illustrates how these components interact throughout the 

system’s workflow. 

 

Figure 16: System Architecture 



The following steps describe the interaction flow in detail, corresponding to the numbered 

sequence shown in the diagram: 

1. User upload documents (Step 1–3): Normal users begin by uploading documents through 

a React.js web interface (Step 2). React.js will send the uploaded file to a Flask-based 

backend API (Step 3), which handles the upload request. 

2. Task queuing and storage (Step 4): After receiving the request, the Flask API enqueues 

the processing task into a Redis-backed task queue [17] (Step 4). If the users want to 

upload the documents to the system, this API will forward the uploaded document to 

MinIO, an object storage system [18], before proceeding to text extraction (Step 5). If the 

users want to only check for plagiarism, it will then proceed to text extraction. 

3. Text extraction (Step 6–7): If the document is a PDF, it will first convert the pdf to 

images in a folder for Google Tesseract OCR to extract raw text from each image (Step 

6). The extracted text is then passed to a custom Python-based preprocessing pipeline 

(Step 7), which handles tokenization, cleanup, and segmentation. 

4. Elasticsearch execution (Step 8): The preprocessed sentences are then either indexed into 

or queried from Elasticsearch (Step 8), depending on whether the operation is for 

plagiarism checking or uploading documents to the system. 

5. Result Delivery (Step 9–10): Once the operation is complete, the results—including 

matched sentences and similarity scores—are compiled in an excel sheet and sent to the 

user via email using an SMTP client (Step 9). The user will receive a notification 

containing the result (Step 10). 

This architecture supports asynchronous processing through Redis, efficient file management via 

MinIO, OCR text extraction, text preprocessing with Python, and scalable similarity search 

through Elasticsearch. The design enables the system to scale with increasing document and 

supports the future integration of additional detection methods. 

 

 



5.2 Document Indexing Workflow 
 

This section outlines the process of uploading more documents to MinIO file storage system and 

indexing their content in Elasticsearch. The workflow handles both PDF and Microsoft Word 

files by extracting their text, preprocessing the content, and storing the results in an Elasticsearch 

index. The diagram below illustrates the process starting from document datasets are inserted 

until users receive its status. 

 

Figure 17: Documents Indexing Workflow 

As shown in the diagram above, the workflow begins with the input of document datasets. 

Depending on the file type, the system either extracts text from Microsoft Word files directly or 

applies OCR to PDF files after converting them into images. The extracted text is then passed 

through a data preprocessing pipeline before being indexed into Elasticsearch. Once indexing is 

successful, the system stores the processed data and sends a status notification via email. 

 



5.3 Plagiarism Detection Workflow 
 

This section outlines the workflow used to detect plagiarism in user-submitted documents by 

comparing their content against previously indexed documents in Elasticsearch. The system 

supports both PDF and Microsoft Word file formats, ensuring flexibility and compatibility with 

common academic materials. After extracting and preprocessing the text, each sentence is 

matched against the existing Elasticsearch index. Sentences with a similarity score above a 

predefined threshold are considered potential matches and compiled into a report. 

 

Figure 18: Plagiarism Detection Workflow 

As shown in the diagram above, the plagiarism detection process begins with the upload of a 

document dataset. The system first checks whether the file is in PDF format. If it is, the PDF is 

converted into images and processed through OCR to extract text. If the file is a Microsoft Word 

document, the text is extracted directly. The raw text is then passed through a data preprocessing 

pipeline. Once preprocessed, the sentences are queried against the Elasticsearch index. If the 

similarity score is above the threshold (75%), the matched sentence is retained. All matched 

sentences are compiled into an Excel report and send to the users via email, completing the 

plagiarism detection process. 



6. Web Application Implementation 

This section outlines the implementation of the web application, which was developed using 

Flask for the backend API and React for the frontend interface. The system enables users to 

interact easily with the plagiarism detection tool through a user interface. The application 

supports three core functionalities: plagiarism checking, indexing new documents into MinIO 

file storage system and Elasticsearch, and viewing and managing stored documents.  

6.1 Plagiarism Detection Webpage 
 

The plagiarism detection webpage allows users to drag and drop multiple documents for 

analysis, supporting two file formats: PDF and Microsoft Word (.docx). Users are required to 

enter their email address to receive the plagiarism detection results once processing is complete.  

 

Figure 19: Plagiarism Detection Webpage 

After users upload the files they want to check for plagiarism, they can click the "Upload" 

button. The data is then packaged into a FormData object and sent to the Flask backend server 

via an HTTPS POST request using the Fetch API. The backend receives the files and email input 

from users for asynchronous processing. 



To handle high-volume uploads during peak hours, the backend is integrated with a Redis server 

to queue document processing tasks. Each job is queued and processed one at a time. A Redis 

dashboard, accessible via port 9181, allows administrators to monitor the job queue, track 

processing status, and identify failed tasks, as shown in the following figure. 

 

 

Figure 20: Redis Queue Dashboard Webpage 

 

Once a job reaches the front of the queue, the plagiarism detection process begins by identifying 

the file type. If the file is a PDF, it is concurrently converted into images and then processed with 

OCR to extract text. The extracted text undergoes preprocessing, as described in Section 4.2.3. 

After preprocessing, each sentence in the cleaned data is queried against the Elasticsearch index. 

If the similarity score exceeds a defined threshold, the sentence is retained and compiled into an 

Excel report using the ExcelWriter Python library. The report includes columns such as the 

sentence from the uploaded document, the matched sentence found in the database, the 

university name of the original source, the name of the original document that was plagiarized, 

and the overall similarity score. 



 

Figure 21: Results Report in Excel 

 

In addition to the Excel report, a summary certificate is also sent, which includes the overall 

similarity score as well as the percentage of content plagiarized from each matched document. 

To generate this certificate, the WeasyPrint library is used to render an HTML template into a 

formatted PDF that highlights document names with high similarity.  

 

Figure 22: Plagiarism Result Certificate 

 



After excel report and certificate are generated. They are emailed to the user using the smtplib, 

EmailMessage, and MIMEText from Python libraries. 

 

 

Figure 23: Plagiarism Detection Results Sent Via Email 

 

 

 

 

 

 

 

 

 

 

 
 



 

6.2 Indexing and Uploading Documents Webpage 
 

This webpage allows users to drag and drop multiple documents for uploading into both the 

Elasticsearch index and the file storage system. This functionality supports improved detection 

accuracy over time as the dataset grows. The drag-and-drop area supports two file formats: PDF 

and Microsoft Word (.docx). Users are required to select the university they want to upload the 

documents to, and also enter their email address to receive a status update once the upload 

process to both MinIO and Elasticsearch is complete.  

 

Figure 24: Indexing and Uploading Documents Webpage 

 

After selecting the target university and enter their email, users can drop the files into the 

designated area and click the "Upload" button to initiate the upload. The selected files and user 

input are then packaged into a FormData object and sent to the Flask backend server via an 

HTTPS POST request using the Fetch API. Once received, the backend uses the MinIO client 

library—along with the configured hostname and access credentials—to store the files in the 

appropriate bucket and folder path. These uploaded files can be viewed via the MinIO web 

dashboard, accessible on port 9001, as shown in the following figure. 



 

Figure 25: MinIO Webpage 

To index the data in Elasticsearch, the backend preprocesses the extracted text and formats it 

according to the predefined index mapping. The bulk() function from the Elasticsearch library is 

then used to efficiently insert the new data. After both Elasticsearch indexing and MinIO storage 

are successfully completed, the smtplib library is triggered. The EmailMessage and MIMEText 

Python libraries are used to customize the email subject, body, and content, which are then sent 

to notify the user whether the upload was successful. 

6.3 File Storage System Webpage 
 

This webpage allows users to view all documents stored in the file storage system and delete 

them without needing to access the MinIO dashboard directly. It displays all available storage 

locations where documents have been uploaded. Additionally, users can download a document 

by clicking on its name or delete it by clicking the delete button, which removes the file not only 

from MinIO but also from the corresponding Elasticsearch index. 



 

Figure 26: MinIO Custom Storage Webpage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Current Results and Limitations 

The current application is designed to perform database-based plagiarism detection, allowing 

users to upload thousands of documents and check for similarities against content stored in the 

system's large internal database. It is capable of retrieving all exact matches as well as detecting 

some sentences that have been slightly modified. 

One significant limitation lies in the OCR extraction process for the Khmer language. The 

accuracy of existing OCR tools remains relatively low for low-resolution documents, which 

directly affects the quality of extracted text. Since the platform relies heavily on OCR to process 

PDF files, improving Khmer OCR accuracy is essential to enhancing the system’s overall 

reliability and detection performance. 

8. User Feedback 
 

During testing and review, staff at the Ministry of Education, Youth and Sport commented that 

"The web application is efficient and fast. It allows us to upload documents and find similar 

sentences easily." However, they also observed that "However, uploading large PDF files format 

for either plagiarism detection process or into a file storage system takes noticeably longer 

compared to Microsoft Word documents file format." This feedback highlights a key 

performance difference due to the need for Optical Character Recognition (OCR) when handling 

PDF files, whereas Microsoft Word files provide faster results. 

9. Future Plan 

For future development, we aim to improve the accuracy of Khmer OCR, which remains a 

critical challenge for reliable text extraction. We plan to conduct further research into OCR 

optimization techniques, such as custom model training, image preprocessing, and post-OCR 

correction. Enhancing OCR performance will significantly strengthen the quality of extracted 

text and, in turn, the accuracy of plagiarism detection.    



Additionally, we plan to extend the system’s capabilities to support plagiarism detection from 

external online sources. This will involve enabling users to query and detect plagiarized content 

directly from publicly available websites and internet resources, thereby expanding coverage 

beyond the existing internal database and improving the overall effectiveness of the detection 

system. 

10. Conclusion 
 

This project presents the design, and the implementation of a Khmer-language plagiarism 

detection system aimed at addressing the lack of digital tools for academic integrity in 

Cambodia. This project explores multiple detection methods—including TF-IDF with cosine 

similarity, N-gram with Jaccard similarity stored in PostgreSQL inverted index, BERT-based 

semantic matching, and Elasticsearch-based retrieval—to compare uploaded documents against a 

growing database of academic texts. Each method was evaluated for accuracy, scalability, and 

performance. The final system selects Elasticsearch to integrate with the web application, 

allowing users to interact easily. 

The application allows users to upload Microsoft Word and PDF files, processes them through a 

preprocessing pipeline, and performs similarity checks using a web-based interface. Feedback 

from the Ministry of Education, Youth and Sport confirmed the system's effectiveness in 

identifying matching content, although OCR processing time and accuracy for PDF files remains 

a limitation. The system is currently deployed on a self-hosted server within the Ministry’s 

infrastructure, enabling secure access for internal users. 

In conclusion, this tool represents an important step toward modernizing academic quality 

control in Cambodia. While the current implementation focuses on database-based detection, 

future development will explore extending the system to query external web content, further 

improving its ability to detect paraphrased and copied material from online sources. 
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