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Abstract

Plagiarism in the Khmer language remains a critical challenge in Cambodia, as the limited
availability of digitized texts and continued reliance on hard-copy sources impede the
development of effective digital detection tools. This gap has enabled widespread plagiarism in
research papers, books, and educational documents published by students, researchers, and
authors from various academic and research organizations, compromising academic integrity and

highlighting the urgent need for a digital solution.

Although advanced plagiarism detection tools, such as Grammarly and Chegg, have significantly
contributed to ensuring originality in many languages worldwide, they fail to detect plagiarism in

under-resourced languages like Khmer.

Therefore, this project aims to develop a plagiarism detection tool specifically for the Khmer
language and to identify the most efficient approach by comparing four different methods: Term
Frequency—Inverse Document Frequency (TF-IDF) with cosine similarity; N-gram with Jaccard
similarity stored in a PostgreSQL inverted index; Bidirectional Encoder Representations from
Transformers (BERT); and Elasticsearch. Additionally, to analyze hard-copy source documents
for plagiarism, they are first scanned and then processed using Optical Character Recognition

(OCR) to extract the necessary text.

The system enables educational institutions, libraries, and publishers to upload large volumes of
documents, books, and academic papers to detect plagiarized content, receive a plagiarism score,
and identify matched sources within seconds. All uploaded documents are stored in a centralized

storage system, allowing users to access their digital copies easily.

The tool is currently deployed on self-managed servers at the Cambodian Ministry of Education,
the primary funder of this initiative. It is being used to assess official educational content and
academic papers from 13 universities in Cambodia, helping evaluate the tool’s effectiveness and

identify areas for further improvement.

While the system effectively detects thousands of identical and similar plagiarized sentences, its

accuracy is limited by the OCR text extraction. Common OCR inaccuracies can result in



distorted text, reducing the effectiveness of plagiarism detection. Future enhancements will focus
on improving OCR performance and integrating internet-based plagiarism detection, ultimately

expanding the system's capabilities and further strengthening research integrity in Cambodia.
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1. Introduction

Every educational institution in Cambodia has enforced strict regulations against plagiarism and
demonstrated a strong commitment to upholding academic integrity. However, there is currently
no dedicated tool for detecting plagiarism in the Khmer language, which creates significant
constraints in validating the originality of authors' work. Since most Cambodian academic
content remains in hard-copy format, this presents further obstacles for institutions attempting to

analyze plagiarized texts effectively.

To address these challenges, the Ministry of Education, Youth, and Sports Secretariat proposed
the development of plagiarism detection tools to deter unethical practices and encourage original
research in Cambodia. This project aims to provide educational institutions, publishers, and

researchers with a tool to verify the originality of Khmer texts efficiently.

This section outlines the problem statement, that is supported by relevant references, and

presents the motivation and background of the project.

1.1 Problem Statement

According to insights shared during a personal interview with the Secretary of State and Minister
at the Ministry of Education, Youth and Sport (MoEYS) in Cambodia, many authors, PhD
researchers, and professors at more than thirteen universities in Cambodia, have reused
redundant content to produce additional publications, despite being informed about the
consequences of plagiarism. These practices have been identified in many education documents
containing overlapping or recycled content within the Ministry of Education’s annual books and

research publications.

Furthermore, a recent official report from the Cambodian Education Forum (2023) found that
plagiarism is common not only among students, but also among many academic staff [1]. The
limited availability of digital Khmer texts worsens the problem, as most of the academic papers
are not digitized. This makes it difficult for advanced internet—based plagiarism detection tools
such as Grammarly or Chegg to work effectively with the Khmer language hard-copy texts.



1.2 Motivation

This plagiarism detection tool is designed to provide a solution for Cambodian university’s
academic departments, faculty members, document publishers, and educational institutions to
verify original works in the Khmer language by comparing them with previously stored
documents in the database. With this tool, institutions will save time and resources by analyzing
large documents for plagiarism in seconds through a user-friendly web-based interface and
receive plagiarism detection results via email. Additionally, the tool addresses challenges related
to non-digitized hard-copy texts by utilizing Optical Character Recognition (OCR) to convert

them into searchable digital text.

1.3 Project Background

Initiated and funded by the Cambodian Ministry of Education, Youth, and Sport (MoEYS), this
project aims to detect plagiarism in academic publications across educational institutions. To
enforce research integrity, the Secretary of State at MOEYS has also authorized thirteen public
universities in Cambodia to test this platform for reviewing research papers, documents, and
published books.

This initiative provides a centralized solution for detecting duplicated content, ensuring that

Cambodia’s academic works maintain high levels of originality and credibility.

Looking ahead to the future, this project will allow not just all institutions in Cambodia, but
students nationwide to use the platform and check for plagiarism easily as digital document

datasets will grow every year.



2. Literature Review

This section reviews existing research on Cross-Language Plagiarism Detection (CLPD) using
multilingual Bidirectional Encoder Representations from Transformers (BERT) and Khmer
semantic search engines. It discusses current limitations and demonstrates how addressing these

issues is essential for building an effective plagiarism detection tool for the Khmer language.

2.1 Plagiarism Detection for Under-Resourced Languages

A recent study by Karen Avetisyan et al. (2023) explores advancements in Cross-Language
Plagiarism Detection (CLPD) using a pre-trained multilingual BERT model, achieving high
accuracy for under-resourced languages. The researchers used Armenian as a test language and
demonstrated that BERT's contextual embeddings could effectively capture semantic similarities
across languages [2]. However, the study has not yet been extended to Southeast Asian
languages like Khmer, which presents distinct challenges such as a continuous script and the lack
of standardized word segmentation tools. Inspired by this work, this project will also utilize this
BERT-based technique specifically for the Khmer language, aiming to overcome its structural

complexities and evaluate the model’s effectiveness on Khmer academic content.

2.2 Khmer Semantic Search Engine

One study by Nimol Thuon et al. (2024) on a Khmer semantic search engine utilizing Term
Frequency-Inverse Document Frequency (TF-IDF) focuses on enhancing document retrieval
based on keyword searches in the Khmer language. The system also allows users to upload
documents to the database and search for similar content within the uploaded files. While the
system effectively retrieves relevant content, its functionality is limited to sentence- or keyword-
based searching and does not support full-document plagiarism analysis of PDF or Word files.
This limitation highlights the need for a more comprehensive approach to Khmer text analysis

that includes OCR and plagiarism detection across various document formats [3].



3. Project Objective, Deliverable and Stakeholders

This section outlines the expected outcomes of the project and key components that need to be
developed to deliver an efficient plagiarism detection tool for our stakeholders. The system was
developed in alignment with the needs of the Ministry of Education, Youth and Sport (MoEYS),
the primary stakeholder. Their involvement ensured that the final platform is both relevant and

usable within the Ministry and across targeted universities in Cambodia.

3.1 Main Objective and Key Deliverable

The main objective of this project is to develop a Khmer-language plagiarism detection tool that
allows educational institutions, publishers, and researchers in Cambodia to verify content
originality. This tool addresses the limitations of existing plagiarism detection platforms such as
Grammarly or Chegg, which lack support for the Khmer language, and a feature that allows
users to upload documents into the system and compare new submissions against those
previously uploaded. This system also utilizes OCR to extract Khmer text from PDF files. The

specific objectives of this project include:

1. Data gathering, cleaning, and pipeline development
o Compile hundreds of sample documents in Microsoft Word and PDF formats
provided by the Cambodian Ministry of Education, Youth, and Sports (MoEYS).
o Preprocess each document by text cleaning and tokenization.
o Create metadata (e.g., document ID, title, author, university) for each document,
and store it in both the database and the file storage system.
2. Integrating Optical Character Recognition (OCR) for hard-copy texts
o Convert all PDF pages to images.
o Extract text from each image using OCR to enable plagiarism detection.
3. Developing a scalable plagiarism detection functionality
o Utilize a fast and scalable similarity search algorithm to detect plagiarized content
within a large academic dataset.
o Set athreshold to identify both exact and partial similarities.



4. Providing a user-friendly web-based platform
o Develop a web interface that allows users to upload documents for plagiarism
detection.
o Deliver plagiarism detection results (e.g., similarity score, matching reference
sentences from the database, and associated university names) in downloadable
Excel files via email.
o Allow users to view, delete, or download all uploaded files in the database as
needed.
o Display real-time storage usage and alert users when storage is full.
o Provide login access for admin and standard users.
5. Deployment on a self-managed server at the Cambodian Ministry of Education, Youth,
and Sports
o Host the file storage system and web application on a self-managed server at
MOEYS.
o Allow all authorized users to access the web application via the domain name

provided by MoEYS (domain name: plagiarism-checker.duraseksa.gov.kh)

3.2 Stakeholder Involvement and Collaboration

The Ministry of Education, Youth and Sport (MOEYS) served as the primary stakeholder in this
project, as the MoEYS team will be responsible for providing the document dataset, defining the
system requirements to meet the expected outcome and the practical needs of Cambodian

education institutions and support final system deployment in the self-managed MoEY'S server.



4. Methodology and Implementation

This section outlines the methodology and technical implementation of the Khmer-language
plagiarism detection system. The methodology consists of three main stages: preparing the input

data, applying different plagiarism detection methods, and evaluating their effectiveness.

The section begins with an overview of the development environment and tools used. It then
explains the data preparation process to extract clean and structured text, which is then used as
input for four distinct detection methods: TF-IDF with cosine similarity, N-gram with Jaccard
similarity stored in a PostgreSQL inverted index, BERT embeddings with FAISS, and full-text
search using Elasticsearch.

Each method is examined in terms of its theoretical foundation, technical implementation, and
performance limitations. Finally, the results are compared to assess which techniques are most
effective for plagiarism detection in the context of the Khmer language.

4.1 Development Environment and Technology Stack

The development environment includes the software frameworks, tools, and services used to
build, train, test, and deploy the Khmer-language plagiarism detection system. It spans several
components, covering backend and frontend development, OCR processing, machine learning

tools, storage system, and deployment. The technologies are grouped as follows:

e Machine learning Tools
o Scikit-learn — Used to implement TF-IDF vectorization and cosine similarity
o Transformers — Used to experiment with the multilingual BERT model for
plagiarism detection
e Text extraction and search Tools
o Tesseract OCR — Used to extract text from images
o Elasticsearch — Enables efficient similarity search and large-scale text retrieval.
o FAISS — Used for integrating with BERT to support fast vector-based document

retrieval



e Storage and background task management
o MinlO — Used to store uploaded documents, supporting secure backup and file
access.
o Redis — Used for managing background tasks and job queues, enabling
asynchronous processing of plagiarism detection tasks.
e Programming languages and frameworks
o Python / Flask — Used to build a backend development framework responsible for
API endpoints, processing logic, and integration with search components
o React.js — Used for developing a responsive and interactive web-based frontend
e Deployment
o Ministry of Education, Youth and Sport (MoEYS) Server — Used for Production
hosting environment
o Docker — Used to containerize and manage all services, ensuring consistent
deployment.
e Development tools
o Visual Studio — Used for source code development
o Postman — Used for RESTful API testing and validation during backend
development
o Jupyter Notebook — Enabled model testing without separate file export
o Google Colab — Used to test BERT-based methods on GPU-enabled environments

for improved performance during experimentation

4.2 Data Preparation

This section outlines the steps taken to prepare data for plagiarism detection, including data
acquisition, file type parsing, and preprocessing. In the data acquisition phase, documents are
provided by official sources from the Ministry of Education, Youth and Sport (MoEYYS). Since
the system accepts two file formats, each file is processed according to its type. For instance,
scanned PDF files are processed using Optical Character Recognition (OCR) with Tesseract,

while Microsoft Word documents are parsed directly to extract text using a Python library. Once



the raw text is extracted, it is cleaned and tokenized using a custom preprocessing pipeline. This

same pipeline is applied to both user-uploaded documents stored in the database and those being

checked for plagiarism, ensuring consistent formatting and reliable comparison.

4.2.1 Data Acquisition

The dataset used in this project was provided via Google Drive by the Ministry of Education,

Youth, and Sport and includes a total of 551 published books collected from thirteen universities

across Cambodia. These documents cover a wide range of topics, including agriculture,

technology, literature, and more. Among these, 541 files are in PDF format while the remaining

10 are in Microsoft Word format. Since most of the PDF files are scanned, Optical Character

Recognition (OCR) is required to extract readable text before all plagiarism detection methods

can be performed.
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4.2.2 Different Filetype Parsing

This section outlines how different file types are handled during the parsing phase to ensure
consistent text extraction. Each format requires a specific processing method, for instance, PDF
files, are processed using Optical Character Recognition (OCR) to extract text, while Microsoft

Word documents are parsed directly using Python library.

4.2.2.1 Portable Document File Parsing

Several Python libraries were explored for extracting text directly from PDF files, including
PyMuPDF, pdfminer, and pdfplumber. Although these tools are widely used for handling digital
PDFs, they do not produce accurate results when applied to Khmer text. As a result, Tesseract
OCR was selected as the primary method for processing scanned PDFs, as it provided more

reliable text recognition for the Khmer language.
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To install Tesseract for the Khmer language on our Windows environment, we downloaded the
trained data file from the Tesseract OCR GitHub repository [4].

Once installed, Tesseract was used to perform OCR on scanned PDF documents. To extract text
using this OCR engine, each page of the PDF was first converted into an image using the
pdf2image library [5]. After retrieving all pages, the pytesseract.image_to_string() function was
then used to extract text from each image. However, processing one page at a time can slow
down the text extraction. Therefore, we utilized Python’s ProcessPoolExecutor to extract text
from multiple pages concurrently. As shown in the following figure, Tesseract OCR produced

the most accurate text extraction compared to the other libraries.
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Figure 5: Text Extraction with OCR (Tesseract)

4.2.2.2 Microsoft Word Document File Parsing

To extract text from Microsoft Word documents in .docx format, we used the Python library
python-docx, which provides access to the document's structure, including paragraphs and tables.
Using this library, the system iterates through all elements in the document body and retrieves
the available text content for further processing. The following pseudocode illustrates the process
of extracting text elements from a .docx file using python-docx:



Algorithm: Pseudocode for Extracting Text from a Word Document

Input: file path  path to the .docx file
Output: text_content  extracted document text
1 Open the Word document from the given file path;
2 Initialize an empty list text_content;
3 for each block in the document body do

4 if block is a paragraph then

5 | Append the paragraph text to text_content;

6 end

7 else if block is a table then

8 for each row in the table do

9 Initialize an empty list row_data;

10 for each cell in the row do

11 | Extract the text and append it to row_data;
12 end

13 Join row_data with a separator and append to

text_content;

14 end
15 end
16 end

17 Return text_content;

Initially, an empty list called document_content is created to store the extracted text. The system
then iterates through each element in the document body using the iterchildren function from the
python-docx library. If the element is a paragraph (i.e., its XML tag ends with 'p"), the text is
extracted and added directly to the document_content list. If the element is a table (tag ends with
'thl"), the system iterates through each row and collects text from all cells. The cell contents are
then joined using the pipe symbol (|) as a separator to form a single formatted row, which is
appended to the document_content list. This process continue until there is no further content in

the document body.
4.2.3 Data Preprocessing Pipeline

After the text is extracted, a series of preprocessing steps are applied to clean and prepare it for
plagiarism detection. The raw text often contains inconsistent line breaks, extra spaces,
unnecessary characters, and irregular newlines. Therefore, the following steps are applied to

ensure text consistency.
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Figure 6: Data Preprocessing Pipeline

1. Remove headers, footers, page numbers, and titles: The raw extracted text often contains
non-content elements such as page numbers, document headers and footers, and chapter
titles. These are considered textual noise and must be removed to improve the accuracy
of plagiarism detection. To filter them out, we observed the following patterns:

e Lines consisting only of two to three-digit numbers with symbols are page
numbers.

e Repeated lines across multiple pages are headers or footers.

e Lines that follow a numbering format (e.g., "1.", "1.1") and have fewer than 20
characters are removed using regular expressions (regex), as they are titles.

2. Character correction and normalization:

e Reordered characters for consistency: In Khmer, certain characters can appear
visually correct but are actually in different Unicode sequences due to incorrect

ordering. For example, the word "{s" (female) can be encoded as either &y + | +1
+ o+ B+ 00N S+ o+ 8+ o+ 1+ . Although these variants look similar on screen,

they produce different underlying character sequences, which can negatively
affect text comparison [6]. To address this issue, the system ensures that the

character 1 is always placed between the diacritic marks (;) to maintain consistent

and correctly ordered Unicode representations [7].



e Incorrect character replacement: Some characters may be incorrectly used or

misrecognized by OCR. For example, frfq (scold) should be represented as #J + ¢
+ i + =, but an OCR error most certainly produces & + ¢ + & + =, substituting the
correct consonant (i) with a similar-looking but incorrect one (). To solve this

issue, we can use the replace function in Python to always convert words that
consist of ¢: + & to return ¢ + i. [6]
e Number normalization: To maintain consistency across the dataset, all Khmer

numerals (e.g., 919m) are converted into Arabic numerals (e.g., 123). [6]

Convert characters to consistent encoding (UTF-8): All content is encoded in UTF-8 to

ensure consistent character representation.
Remove spaces: Extra spaces, tabs, and line breaks are stripped to ensure clean texts.

Remove unwanted punctuation: Punctuation that does not contribute to meaning such as

oW, J,« «, A7, (, /), etc. are removed.

Sentence segmentation: The cleaned text is then divided into sentence-level units using

Khmer ending punctuation and symbols such as: <1, ¢, and ?.

. Word tokenization: For Khmer, a language that does not use spaces between words, word
tokenization is a critical preprocessing step. Methods like TF-IDF, N-gram, and
Elasticsearch rely on clearly defined word boundaries to compute meaningful terms. To
achieve this, we use the khmercut library to segment sentences into smaller word units for

indexing and similarity detection [8].

Correct OCR spell-check errors: OCR can introduce spelling errors, especially with the

Khmer script. This step identifies and corrects OCR spelling mistakes to improve



accuracy in plagiarism detection. To implement this, we use a tool provided by

Khmerlang spell check correction API to process the tokenized words [9].

dex" 162, "suggestions”: ["ssEmmi"], "word" : "ty "scores” : [8.5476054e-1a] , "type” : "typo" 11|

Figure 7: OCR Spelling Errors Correction with Khmerlang API

As shown in the above figure, the API returns results that allow us to identify words with
OCR errors. We then use the suggestions from the API response to replace those words

and reduce errors caused by OCR.

9. Remove stop words: Common but semantically weak words such as “m#>, “mi” or “18:”

are removed to improve search relevance. To implement this, we have used the Khmer
stop word from the Khmer Natural Language Processing community to filter all of the

unnecessary words [10].

After preprocessing, the cleaned and standardized text is ready for analysis. This processed data
is then used as input across the following plagiarism detection methods. Each method is

described in the following sections along with its implementation, and evaluation results.

4.3 Plagiarism Detection Methods

This section outlines different methods that can be used to detect plagiarized content in the
preprocessed data. After exploring each method, the following section will evaluate which one
offers the best results, and that method will be integrated into our web application system. Each
method uses a distinct strategy to measure text similarity, including vector-based approaches like

TF-1DF with cosine similarity; set-based techniques like n-gram and Jaccard similarity (stored in



an inverted index in PostgreSQL); advanced retrieval engines like Elasticsearch; and deep

learning models such as BERT combined with FAISS for similarity matching.

The following subsections explain each method in detail, including its theoretical overview,

technical implementation aligned with system requirements, results, and limitations.
4.3.1 TF-IDF and Cosine Similarity

Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity are widely used
methods for measuring textual similarity. They convert each sentence into a vector based on
word importance and calculate similarity using the cosine of the angle between the two vectors.
This section explains how TF-IDF works in theory, its technical implementation, performance

optimization, results and limitation.

4.3.1.1 Theoretical Overview

Term frequency (TF) measures how frequently a term appears in a document, normalized by the

total number of terms in that document.

Number of times term t appears in document d

TF (t,d) = -
(& d) Total number of terms in doument d

However, Term Frequency alone is not sufficient to determine whether each document is similar
because there could be common terms that may appear frequently in many documents but carry
no meaning which lead to false positive. Therefore, we combine Inverse Document Frequency to

also measure how rare a term is across all documents.

Total number of document

IDF (t) =1
© °9 Number of documents containing termt



If a term appears in many documents, the denominator becomes large, and the overall fraction
becomes small. By taking the logarithm of a small number, the IDF score becomes low, making
the frequent words appear to be less considered and prioritized words with rarity across the entire
document. By multiplying TF and IDF, we ensure a term receives a high TF-IDF score only

when it is both frequent and also rare in the overall dataset. [11]
TF — IDF (t,d) = TF(t,d) X IDF (t)

To apply this method in our plagiarism detection tool, we first compute the TF-IDF scores for all
terms (words) across both the original documents in the database and the newly uploaded
document that the user wants to check for plagiarism. These scores are combined into vectors,

with each sentence represented as a vector.

After converting each sentence into a TF-IDF vector, we compare the sentence vectors from the
newly uploaded document with those from the existing documents in the database. To measure
how similar two sentences are, we apply cosine similarity, which calculates the angle between

two vectors in a high-dimensional space.

The smaller the angle, the more similar the sentences are. A cosine similarity scores close to 1
indicates high similarity, while a score near 0 suggests little to no similarity. The formula for

cosine similarity between two vectors, A and B, is shown below

A.B

cosine similarity score (A,B) = W

4.3.1.2 Process Flow with TF-IDF and Cosine Similarity

TF-1DF vectors are computed based on term frequencies and document frequencies across the
entire dataset, including the original documents in the database and the newly uploaded
documents that the user wants to check for plagiarism. This process is computationally expensive

and inefficient, especially when dealing with many documents.



To address this limitation, we compute the TF-IDF vectors once for each sentence in the original
documents and utilize the joblib library to save the results. Joblib is a Python library that
efficiently saves and loads large objects like TF-IDF models and vectors to avoid recomputing
them repeatedly [12]. Later, when a new document is uploaded, we simply load the saved results
from joblib and transform only the new sentences into TF-IDF vectors. These vectors are then
compared to each vector in the precomputed matrix using cosine similarity to produce similarity
scores. This approach avoids redundant preprocessing by saving the results once and loading
them when needed. The diagram below illustrates the implementation of this method:

Data Preprocessing for TF-IDF

|
|
|
(1 i 2 3) ~ i Usi
I Original documents Data Prgprpcessmg » Compute TF-IDF matrix > SaveTF ".JF 'T’a'"x using
| Pipeline joblib
|
|
el
L 8 Load the saved file
Plagiarism Checking Stage
|
|
| (1 ) (2) (3) | Compute cosine similarity | (4)
| Neéﬂ‘éuunﬂf:tged e F;ie;;;ci:ssmg Compute TF-IDF matrix  —— between sentence vectors » Display the results
| P from both matrices
|
|
|

Figure 8: TF-IDF Pipeline Implementation

4.3.1.3 Technical Implementation

For this implementation, we utilize TfidfVectorizer function from Scikit-learn feature extraction
library to calculate TF-1DF score and convert each sentence into vector. We divide the

implementation into four main stages:

1. Preprocessing and sentence extraction: We load our entire dataset, which contains
metadata such as document ID, university, title, author, original filename, content type
and a list of sentences. Each sentence is converted to TF-IDF vector and mapped to its

corresponding metadata, allowing us to trace any detected similarity back to the original
source.



2. TF-IDF vectorization and joblib caching: After computing TF-IDF matrix with Scikit-
learn, we use the joblib from the Python library to save the vectorizer training model, TF-
IDF matrix of the original documents and its metadata. This allows us to avoid
computing TF-IDF for the entire original documents in the database again every time a

user upload a document to check for plagiarism.

from sklearn.feature_extraction.text import TfidfVectorizer
import joblib

vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_sentences)

joblib.dump(vectorizer, "vectorizer.pkl™)
joblib.dump(tfidf_matrix, "tfidf_matrix.pkl")
joblib.dump(index_to_metadata, "metadata.pkl")

3. Transforming uploaded documents: When a user uploads new documents for plagiarism
checking, the documents are passed through the same data preprocessing pipeline and

transform function from Scikit-learn using the saved TfidfVectorizer from joblib.

4. Measure textual similarity: Cosine similarity is used to compare each uploaded sentence

vector with all original sentences vector in order to measure the similarity.

def cosine_similarity(vecl, vec2):
dot_product = sum(a * b for a, b in zip(vecl, vec2))
magnitudel = math.sgrt(sum(a ** 2 for a in vecl))
magnitude2 = math.sgrt(sum(b ** 2 for b in vec2))
if magnitudel == @ or magnitude2 ==
return 0.0
return dot_product / (magnitudel * magnitude2)

4.3.1.4 Results and Limitation

The processing time of this approach increases with the number of sentences being compared, as
the system performs sentence-by-sentence similarity calculations. A key limitation of this
method lies in its scalability: frequently adding new documents to the original dataset would
require retraining the TF-IDF vectorizer on the entire corpus, which becomes increasingly time-

consuming as the dataset grows.



4.3.2 N-gram and Jaccard Similarity

N-gram and Jaccard similarity are another technique for comparing sets of text based on shared
sequences. N-gram splits text into sequences of n words, while Jaccard similarity measures the
overlap between two texts. This section outlines how n-gram and Jaccard similarity works in
theory, along with their technical implementation to meet the requirements of our plagiarism

detection system, their output results, and their limitations [13].

4.3.2.1 N-gram Tokenization Technique

N-gram is a sequence of terms extracted from a given text. In our plagiarism detection tool, we
use n-gram to break sentence into smaller segments and identify overlapping segments between
sentences.

N-gram on Khmer Language

N=1 N=2 N=3
Al maisi Alatsianan
15l isianan

anan

Figure 9: Khmer Language N-Gram

4.3.2.2 Measure Sentence Similarity with Jaccard

Jaccard similarity is a method for comparing the similarity between two sets. In this context, let
set A represent the n-grams of the original documents, and set B represent the n-gram of the
uploaded document being checked for plagiarism. The Jaccard similarity between those two sets
is defined as:



|A N B
|A U B|

Jaccard Similarity (A,B) =

The Jaccard similarity ranges from 0 to 1, where a higher similarity score indicates more

overlapping n-grams between the two sets, while a lower score indicates less overlap.

4.3.2.3 Process Flow with N-gram and Jaccard Similarity

Calculating Jaccard similarity based on shared n-grams between all sentence pairs can be
memory and computationally expensive, especially when we have a large number of documents.
To address this, we use an inverted index method. Each n-gram from every sentence in the

original documents is stored in the database, and mapped to the sentence 1Ds where it appears.

Ngrams =3 Sentence IDs
mfT A, [AnigEs, sl —_— 1 2 3 4
T H iR Rl _— 1 2
15, mu, anani]s —_— 1
ay, ananigs, sl e 1

Figure 10: Inverted Index for N-Gram

During the plagiarism detection process, the newly uploaded document is split into sentences,
and each sentence is broken into n-grams. These n-grams are then used to search for matches in
the n-gram table in the database, allowing the system to quickly retrieve the sentence ID and its
full sentence from the original document if they share at least one n-gram. Jaccard similarity is
computed only between these candidate sentences, rather than performing a full sentence-by-

sentence comparison. The diagram below illustrates the implementation of this method:
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Figure 11: N-Gram and Jaccard Similarity Pipeline Implementation

4.3.2.4 Technical Implementation

First, we iterate through each sentence and its word tokens to create n-gram sequences. These
unique n-grams are then indexed in a PostgreSQL database to support fast lookups. When a user
uploads a document for plagiarism checking, we extract its n-grams and compare them against
the indexed n-grams to retrieve candidate matches and then apply Jaccard to compute the
similarity score. The overall implementation is divided into three main stages:

1. Each sentence is processed by splitting it into a list of words, then iterating through

the list to group every n consecutive word into n-grams. In the following example, we

use n=3.

[(anA', UmS', CHSIEN'), ((UmIS’, "HSE', 'tns'), (‘HSm', ‘o, 'ug’), (‘te’, 'ug', 1§]a'), ('us', 's
wlEt, o), (EaEt, o, rwmEamnt), (o, oSN, Caigs'), (Cs8gmn, Caigst, Cianist), (foigst, tianisr,
‘wrGgghmet), (Cianist, weasgsmon’, gy, (waASgsE:eat, ‘garr, Toumt), (CBat, ‘Oumst, ‘wesn'), ((ouns,
‘egR', ua'), ("RIBSE', TUR’, 'UNPIS'), (MUE', 'UNLS', 'USNMWg'), ("UNPES’, 'UMnmig’, aHEEs’), (ushnn
g, e, S8, (e, C8n, ), (PS80, mnmt, tabyenst), (Y, abysnst, CpEut), (CampEr, RUC, '3

U0, (pUr, gue, ey, (e, w887, (w80, fumst), (88, e, s, (umss, e, e
nfivy, (tians, ‘wadt, Cewprt), (et Cagpt, tSig]), (g, CEiE)t, anersn'), (CEig]t, anwsn', 'y'), (‘anwsn’, 'ye,
‘SgFt), ('y’, 'S, 'sumcow'), (CSFu', 'Swnenm’, 'amgm'), (CSwnoawt ) amgns' ) igjwt) ]

Figure 12: Trigram Output from Sample Khmer Texts



2. We created three tables such as sentences, inverted index and ngrams in PostgreSQL.
The sentences table stores each sentence along with its associated metadata, including
the document ID, sentence ID (as the primary key), full sentence, author, title,
university, and year of publication. The ngrams table stores each unique n-gram from
all sentences, with ngram ID as the primary key. The inverted index table maps each
n-gram to the sentence it appears in by storing both sentence ID and ngram ID as
foreign keys. This structure enables better retrieval of candidate sentences for Jaccard
similarity comparison.

sentence_id £ sentence_id & ngram_id £

ment_id ngram_id & ngram_text

Figure 13: Inverted Index Schema for N-Gram in PostgreSQL

3. Once all candidate sentence IDs are obtained, we retrieve their corresponding full n-
grams and compute for Jaccard similarity. The similarity score is calculated as the
ratio of the intersection size to the union size of the two n-gram sets. This comparison

is implemented using set operations in Python.

def jaccard similarity(setl, set2):

intersection = setl & set2
union = setl | set2
if not union:
return 0.0
return len(intersection) / len(union)




4.3.2.5 Results and Limitation

This approach consumes a large amount of memory, especially with large datasets consisting of
hundreds of thousands of sentences. Since every sentence is broken down into multiple n-grams
and stored in the ngrams table, data can grow rapidly, consuming significant storage and memory

resources. This leads to slower response times and reduced scalability for real-time applications.
4.3.4 Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers (BERT) is an open-source language
model developed by Google that can capture the semantic meaning of sentences. This allow us to
apply it in our tool to detect similar content. This section outlines the use of this method and the
implementation of BERT with FAISS (Facebook Al Similarity Search) to perform plagiarism

detection.

4.3.4.1 Utilizing Multilingual BERT and FAISS

For under-resourced languages like Khmer, we utilize a multilingual BERT model—paraphrase-
multilingual-MiniLM-L12-v2—which could capture the semantic meaning of Khmer text and
supports cross-lingual similarity [2]. To enable efficient similarity search, we employ FAISS
(Facebook Al Similarity Search), which allows for fast approximate nearest neighbor retrieval in
large vector spaces, significantly reducing computation time compared to brute-force pairwise
comparisons. In our implementation, we use the IndexFlatL2 index, which performs search using

the L2 (Euclidean) distance [14]. The L2 distance between two vectors x and y is defined as:

L2(x,y) =




4.3.4.2 Process Flow with BERT and FAISS

To implement our plagiarism detection tool with BERT and FAISS, we divide the process into

two main stages: the original document preprocessing stage and the plagiarism checking stage.

1. Inthe preprocessing stage, after each sentence from the original documents is cleaned
and tokenized using our data preprocessing pipeline, it is encoded using a pre-trained
BERT model and then indexed using FAISS for efficient similarity search. This index is
saved into a model file to be reused during the plagiarism detection process.

2. Inthe plagiarism checking stage, when a user uploads a new document, the same data
preprocessing, and BERT encoding process is applied to the new document. The saved
FAISS model is then loaded, and the newly encoded vectors are searched against the

index to retrieve similar sentences.
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Figure 14: BERT and FAISS Pipeline Implementation

4.3.4.3 Technical Implementation

For this implementation, we use sentence transformers function from the SentenceTransformer
library directly to encode the sentence to a dense vector in our Python code and FAISS library
for indexing. This section outlines the encoding process using a pre-trained model from BERT
and FAISS indexing.



1. Each sentence is converted into a high-dimensional dense vector using a pre-trained
multilingual model called paraphrase-multilingual-MiniLM-L12-v2 from transformer,

which allows the system to detect some exact matches as well as paraphrased content.

from sentence_transformers import SentenceTransformer

# Utilize paraphrase-multilingual-MinilM-L12-v2 to support for Khmer language
model_MinilM = SentenceTransformer('paraphrase-multilingual-MinilM-L12-v2")

# Combine all sentences and encode with the model
embeddings = model_MinilM.encode(sentences, convert_to_numpy=True)

2. These vectors are added to a FAISS index to support fast and scalable search. This index
allows fast comparison between new sentences and the existing dataset by vector
distance. For this implementation, we can call the FAISS library directly and add the
embeddings to the index.

import faiss
import numpy as np

vector_dimension = embeddings.shape[1]
index = faiss.IndexFlatlL2(vector_dimension)
index.add(embeddings)

4.3.4.4 Results and Limitation

This approach does not always return all matching sentences from the original dataset, even
though they are completely identical or highly similar. This limitation is largely due to the way
semantic similarity is computed, which is based on approximation rather than exact sentence
matching. Another key limitation lies in the method’s scalability, as frequently adding new
documents to the dataset requires re-encoding the entire corpus, which becomes increasingly
time-consuming as the dataset grows. Additionally, this method relies on a GPU to process high-
dimensional embeddings efficiently. However, such hardware is not currently available on the

Ministry of Education's server.




4.3.5 Elasticsearch-Based Plagiarism Detection Method

This section outlines the fourth approach to plagiarism detection using Elasticsearch.
Elasticsearch is widely used due to its search capabilities, making it a suitable candidate for

identifying potential plagiarized content.
4.3.5.1 Conceptual Overview

Elasticsearch is a search engine that supports fast and efficient full-text search. It is designed to
store, index, and search large volumes of text data effectively. Like the N-gram and Jaccard
similarity method described earlier, Elasticsearch also uses an inverted index—a data structure
that maps each term in the dataset to the list of documents where it appears [15]. For ranking
results, Elasticsearch uses the BM25 (Best Matching 25) algorithm, which builds upon TF-IDF
by also considering document length. This slightly favors shorter documents and helps prevent
longer documents from gaining an unfair advantage simply by repeating terms more frequently
[16].

4.3.5.2 Process Flow with Elasticsearch

To implement our plagiarism detection tool with Elasticsearch, we divide the process into two

main stages: the original document preprocessing stage and the plagiarism checking stage.

1. Inthe preprocessing stage, each sentence from the original documents is cleaned and
tokenized using our data preprocessing pipeline. These processed sentences are then
stored in an Elasticsearch index, enabling efficient retrieval and full-text search
capabilities during plagiarism detection.

2. Inthe plagiarism checking stage, when a user uploads a new document, it will go through
the same cleaning and tokenization process using our data preprocessing pipeline. The
system then queries the Elasticsearch index to retrieve sentences that are textually similar
to the uploaded content. If any matching results are above similarity threshold, they are

flagged and presented as potential plagiarism cases.
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Figure 15: Elasticsearch Pipelin

4.3.5.3 Technical Implementation

e Implementation

The Elasticsearch method involves configuring a full-text search engine that can index and query

large volumes of sentence-level data. This section out

use for indexing and querying.

lines how we setup the Elasticsearch, and

1. Docker was used to deploy Elasticsearch, which was configured to run on port 9200 and

made accessible via its RESTful API. The app

lication utilized the official Python

Elasticsearch client to communicate with the containerized instance for both indexing and

query operations.

GET v http:/flocalhost:9200
Params Authorization Headers (7) Body Scripts e Settings
Body Cookies Headers (4) TestResults (1/1) 40
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14 "minimum_index_compatibility_ " "7.0.0"
15 i,
16 "tagline": "You Know, for Search"
17 B

200 OK 9 ms




To enable efficient search, a custom mapping was first defined in Elasticsearch to specify
the structure of the indexed documents. This mapping included fields such as title,
authors, publication year, university, and sentence. Once the index was created with the
defined mapping, documents adhering to this structure were inserted into the system.

# Define mapping with all required fields
mapping = {
"mappings": {
"properties”: {
"title": {"type": "text"},
"authors™: {"type": "text"},
"publish_year™”: {"type": "integer"},
"university": {"type": "keyword"},
"sentence”: {
"type": "text",
"fields": {
"keyword": {"type": "keyword"} # Enables exact search

}

}

}
# Create the index with the mapping

response = requests.put(
f"{ELASTICSEARCH_URL}/{INDEX_NAME}",
headers={"Content-Type": "application/json"},
data=json.dumps(mapping)

Elasticsearch analyzes the text from our queries and returns the most relevant matches

based on scoring result.
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4.3.5.4 Results and Limitation

Elasticsearch performed well both speed and accuracy. It can find all the identical sentences in
the database in short period of time. Even when the input sentences had small changes, such as
one or two extra or missing words, Elasticsearch still returned similar results. This shows that it
can handle both exact matches and slightly different sentences, making it a strong choice for our

plagiarism detection tool requirement.

4.4 Methods Comparison and Discussion

This section presents a comparative analysis of the plagiarism detection methods implemented in
the system. The goal is to identify the most effective approach based on detection accuracy,
execution time, memory usage, and scalability. The first subsection outlines the evaluation
methodology and testing criteria, while the second provides a justification for the final method

selection based on observed results.

4.4.1 Evaluation Methodology

To evaluate the effectiveness of each plagiarism detection method, we tested whether the system
could successfully return all expected matches for a set of known plagiarized sentences. We
randomly selected 600 sentences from the 551 indexed documents: 300 were exact matches,
while the remaining 300 were slightly modified by inserting, deleting, or substituting, while still

preserving the original content and sentence structure.

Each method—TF-IDF with cosine similarity, N-gram with Jaccard similarity, Elasticsearch, and
BERT embeddings with FAISS was evaluated based on its ability to accurately retrieve all 600
sentences. The comparison focuses on accuracy, execution time, memory usage, and scalability.

The results are summarized in the table below.



Score

Time Peak Memory
Methods Exact Similar Execution Usage (MB) Scalability
Sentence | Sentence | (second)
Inefficient for frequent data insertions,
TF-IDF & Cosine 1.00 0.87 103.90 291.19 deletions, or updates due to the need to
recompute the entire TF-IDF matrix.
N%;irg;gnd Not scalable for large datasets, as n-gram
(PostgreSQL 1.00 0.77 > 1000 15.88 growth significantly increases memory and
inverted index) slows down query performance.
paraphrase-
multilingual- Frequent data updates require intensive
.. 0.71 0.23 83.834 0.21 . .
miniLM-L12-v2 memory and computation to rebuild.
BERT*
Elasticsearch 1.00 0.86 5 1424 9.69 Elasticsearch allows parallel search and

indexing for large datasets.

* GPU is required for this operation

Table 1: Methods Comparison

4.4.2 Final Method Selection

Based on the evaluation results, Elasticsearch offers the best overall balance between accuracy,

performance, memory efficiency, and scalability. It successfully returned all exact matches and

performed nearly as well as TF-IDF on similar sentences, while executing significantly faster

and using less memory. Unlike methods such as TF-IDF and BERT, which require costly

recomputation or GPU support, Elasticsearch supports incremental updates and parallel indexing,

making it well-suited for large-scale and continuously growing datasets. Given these advantages,

Elasticsearch was selected as the final method for our plagiarism detection system.




5. System Architecture and Workflow

This section outlines the overall architecture of the proposed plagiarism detection system, with a
focus on how different technology components interact to support both uploading document to
the database and plagiarism detection. It describes the technical components involved in the
backend infrastructure and explains the key workflows from system input to output. The
following subsections provide an overview of the system’s core components and describe two

key backend workflows: one for indexing documents and another for detecting plagiarism.

5.1 Overview of System Components

The proposed system is composed of multiple technology components, including React.js, Flask
API, Redis, MinlO file storage, Google Tesseract OCR, and Python scripts for the data
preprocessing pipeline. These components work together to prepare documents for indexing and
querying in Elasticsearch. Figure 16 illustrates how these components interact throughout the

system’s workflow.
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Figure 16: System Architecture




The following steps describe the interaction flow in detail, corresponding to the numbered

sequence shown in the diagram:

1. User upload documents (Step 1-3): Normal users begin by uploading documents through
a React.js web interface (Step 2). React.js will send the uploaded file to a Flask-based

backend API (Step 3), which handles the upload request.

2. Task queuing and storage (Step 4): After receiving the request, the Flask APl enqueues
the processing task into a Redis-backed task queue [17] (Step 4). If the users want to
upload the documents to the system, this API will forward the uploaded document to
MinlO, an object storage system [18], before proceeding to text extraction (Step 5). If the

users want to only check for plagiarism, it will then proceed to text extraction.

3. Text extraction (Step 6-7): If the document is a PDF, it will first convert the pdf to
images in a folder for Google Tesseract OCR to extract raw text from each image (Step
6). The extracted text is then passed to a custom Python-based preprocessing pipeline

(Step 7), which handles tokenization, cleanup, and segmentation.

4. Elasticsearch execution (Step 8): The preprocessed sentences are then either indexed into
or queried from Elasticsearch (Step 8), depending on whether the operation is for

plagiarism checking or uploading documents to the system.

5. Result Delivery (Step 9-10): Once the operation is complete, the results—including
matched sentences and similarity scores—are compiled in an excel sheet and sent to the
user via email using an SMTP client (Step 9). The user will receive a notification
containing the result (Step 10).

This architecture supports asynchronous processing through Redis, efficient file management via
MinlO, OCR text extraction, text preprocessing with Python, and scalable similarity search
through Elasticsearch. The design enables the system to scale with increasing document and

supports the future integration of additional detection methods.



5.2 Document Indexing Workflow

This section outlines the process of uploading more documents to MinlO file storage system and
indexing their content in Elasticsearch. The workflow handles both PDF and Microsoft Word
files by extracting their text, preprocessing the content, and storing the results in an Elasticsearch
index. The diagram below illustrates the process starting from document datasets are inserted
until users receive its status.
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Figure 17: Documents Indexing Workflow

As shown in the diagram above, the workflow begins with the input of document datasets.
Depending on the file type, the system either extracts text from Microsoft Word files directly or
applies OCR to PDF files after converting them into images. The extracted text is then passed
through a data preprocessing pipeline before being indexed into Elasticsearch. Once indexing is

successful, the system stores the processed data and sends a status notification via email.



5.3 Plagiarism Detection Workflow

This section outlines the workflow used to detect plagiarism in user-submitted documents by
comparing their content against previously indexed documents in Elasticsearch. The system
supports both PDF and Microsoft Word file formats, ensuring flexibility and compatibility with
common academic materials. After extracting and preprocessing the text, each sentence is
matched against the existing Elasticsearch index. Sentences with a similarity score above a
predefined threshold are considered potential matches and compiled into a report.
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Figure 18: Plagiarism Detection Workflow

As shown in the diagram above, the plagiarism detection process begins with the upload of a
document dataset. The system first checks whether the file is in PDF format. If it is, the PDF is
converted into images and processed through OCR to extract text. If the file is a Microsoft Word
document, the text is extracted directly. The raw text is then passed through a data preprocessing
pipeline. Once preprocessed, the sentences are queried against the Elasticsearch index. If the
similarity score is above the threshold (75%), the matched sentence is retained. All matched
sentences are compiled into an Excel report and send to the users via email, completing the

plagiarism detection process.



6. Web Application Implementation

This section outlines the implementation of the web application, which was developed using
Flask for the backend API and React for the frontend interface. The system enables users to
interact easily with the plagiarism detection tool through a user interface. The application
supports three core functionalities: plagiarism checking, indexing new documents into MinlO

file storage system and Elasticsearch, and viewing and managing stored documents.
6.1 Plagiarism Detection Webpage

The plagiarism detection webpage allows users to drag and drop multiple documents for
analysis, supporting two file formats: PDF and Microsoft Word (.docx). Users are required to

enter their email address to receive the plagiarism detection results once processing is complete.
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Files
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172.16.100.105/upload

Figure 19: Plagiarism Detection Webpage

After users upload the files they want to check for plagiarism, they can click the "Upload"
button. The data is then packaged into a FormData object and sent to the Flask backend server
via an HTTPS POST request using the Fetch API. The backend receives the files and email input

from users for asynchronous processing.



To handle high-volume uploads during peak hours, the backend is integrated with a Redis server
to queue document processing tasks. Each job is queued and processed one at a time. A Redis
dashboard, accessible via port 9181, allows administrators to monitor the job queue, track
processing status, and identify failed tasks, as shown in the following figure.

RQ-dashboard Queues Jobs Worker O [0] redis://127.0.0.1:6379 ~

Queues

Queue Queued jobs Deferred jobs Scheduled jobs Started jobs Finished jobs Failed jobs Canceled jobs

default

Figure 20: Redis Queue Dashboard Webpage

Once a job reaches the front of the queue, the plagiarism detection process begins by identifying
the file type. If the file is a PDF, it is concurrently converted into images and then processed with
OCR to extract text. The extracted text undergoes preprocessing, as described in Section 4.2.3.
After preprocessing, each sentence in the cleaned data is queried against the Elasticsearch index.
If the similarity score exceeds a defined threshold, the sentence is retained and compiled into an
Excel report using the ExcelWriter Python library. The report includes columns such as the
sentence from the uploaded document, the matched sentence found in the database, the
university name of the original source, the name of the original document that was plagiarized,

and the overall similarity score.
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Figure 21: Results Report in Excel

In addition to the Excel report, a summary certificate is also sent, which includes the overall
similarity score as well as the percentage of content plagiarized from each matched document.
To generate this certificate, the WeasyPrint library is used to render an HTML template into a

formatted PDF that highlights document names with high similarity.
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Figure 22: Plagiarism Result Certificate



After excel report and certificate are generated. They are emailed to the user using the smtplib,

EmailMessage, and MIMEText from Python libraries.

Plagiarism Check Report & Certificate Inbox x

meassothyro3@gmail.com
tome =

Dear respective university,
Please find attached:
1. A detailed plagiarism report for your file: 'one_plagiarism_report xIsx'

2. A certificate summarizing the similarity scores

Best regards,
Cambodia Center of Digital Distance Education Team

2 Attachments « Scanned by Gmail ©

]
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Figure 23: Plagiarism Detection Results Sent Via Email



6.2 Indexing and Uploading Documents Webpage

This webpage allows users to drag and drop multiple documents for uploading into both the
Elasticsearch index and the file storage system. This functionality supports improved detection
accuracy over time as the dataset grows. The drag-and-drop area supports two file formats: PDF
and Microsoft Word (.docx). Users are required to select the university they want to upload the
documents to, and also enter their email address to receive a status update once the upload
process to both MinlO and Elasticsearch is complete.
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Figure 24: Indexing and Uploading Documents Webpage

After selecting the target university and enter their email, users can drop the files into the
designated area and click the "Upload™ button to initiate the upload. The selected files and user
input are then packaged into a FormData object and sent to the Flask backend server via an
HTTPS POST request using the Fetch API. Once received, the backend uses the MinlO client
library—along with the configured hostname and access credentials—to store the files in the
appropriate bucket and folder path. These uploaded files can be viewed via the MinlO web

dashboard, accessible on port 9001, as shown in the following figure.
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Figure 25: MinlO Webpage

To index the data in Elasticsearch, the backend preprocesses the extracted text and formats it
according to the predefined index mapping. The bulk() function from the Elasticsearch library is
then used to efficiently insert the new data. After both Elasticsearch indexing and MinlO storage
are successfully completed, the smtplib library is triggered. The EmailMessage and MIMEText
Python libraries are used to customize the email subject, body, and content, which are then sent
to notify the user whether the upload was successful.

6.3 File Storage System Webpage

This webpage allows users to view all documents stored in the file storage system and delete
them without needing to access the MinlO dashboard directly. It displays all available storage
locations where documents have been uploaded. Additionally, users can download a document
by clicking on its name or delete it by clicking the delete button, which removes the file not only
from MinlO but also from the corresponding Elasticsearch index.
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7. Current Results and Limitations

The current application is designed to perform database-based plagiarism detection, allowing
users to upload thousands of documents and check for similarities against content stored in the
system's large internal database. It is capable of retrieving all exact matches as well as detecting

some sentences that have been slightly modified.

One significant limitation lies in the OCR extraction process for the Khmer language. The
accuracy of existing OCR tools remains relatively low for low-resolution documents, which
directly affects the quality of extracted text. Since the platform relies heavily on OCR to process
PDF files, improving Khmer OCR accuracy is essential to enhancing the system’s overall

reliability and detection performance.

8. User Feedback

During testing and review, staff at the Ministry of Education, Youth and Sport commented that
"The web application is efficient and fast. It allows us to upload documents and find similar
sentences easily." However, they also observed that "However, uploading large PDF files format
for either plagiarism detection process or into a file storage system takes noticeably longer
compared to Microsoft Word documents file format.” This feedback highlights a key
performance difference due to the need for Optical Character Recognition (OCR) when handling

PDF files, whereas Microsoft Word files provide faster results.

9. Future Plan

For future development, we aim to improve the accuracy of Khmer OCR, which remains a
critical challenge for reliable text extraction. We plan to conduct further research into OCR
optimization techniques, such as custom model training, image preprocessing, and post-OCR
correction. Enhancing OCR performance will significantly strengthen the quality of extracted

text and, in turn, the accuracy of plagiarism detection.



Additionally, we plan to extend the system’s capabilities to support plagiarism detection from
external online sources. This will involve enabling users to query and detect plagiarized content
directly from publicly available websites and internet resources, thereby expanding coverage
beyond the existing internal database and improving the overall effectiveness of the detection

system.

10. Conclusion

This project presents the design, and the implementation of a Khmer-language plagiarism
detection system aimed at addressing the lack of digital tools for academic integrity in
Cambodia. This project explores multiple detection methods—including TF-IDF with cosine
similarity, N-gram with Jaccard similarity stored in PostgreSQL inverted index, BERT-based
semantic matching, and Elasticsearch-based retrieval—to compare uploaded documents against a
growing database of academic texts. Each method was evaluated for accuracy, scalability, and
performance. The final system selects Elasticsearch to integrate with the web application,

allowing users to interact easily.

The application allows users to upload Microsoft Word and PDF files, processes them through a
preprocessing pipeline, and performs similarity checks using a web-based interface. Feedback
from the Ministry of Education, Youth and Sport confirmed the system's effectiveness in
identifying matching content, although OCR processing time and accuracy for PDF files remains
a limitation. The system is currently deployed on a self-hosted server within the Ministry’s

infrastructure, enabling secure access for internal users.

In conclusion, this tool represents an important step toward modernizing academic quality
control in Cambodia. While the current implementation focuses on database-based detection,
future development will explore extending the system to query external web content, further

improving its ability to detect paraphrased and copied material from online sources.
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